Standardizacija elemenata popločanja slobodnih formi – dodatak

24

Kao dodatak, pokušali smo da razradimo materijalizaciju površina, gradiranjem dve boje. Gornje trouglove smo izdelili na manje trouglove da bi se gradacija bolje predstavila.

31

Postavili smo tačku u odnosu na koju merimo udaljenost trouglova.

32

Ovom metodom dodeljujemo boje. U našem slučaju, ploče koja su bliže tački imaju veći broj narandžastih polja, a koje su dalje od nje, imaju veći broj plavih.

33

34

Published
Categorized as 00 Radovi

Standardizacija elemenata popločanja slobodnih formi – nastavak 2

Ceo prethodni postupak smo pokušali da ubacimo u petlju, da bi softver sam ponavljao operaciju odredjeni broj puta uz parametarsko kontrolisanje.

21

 

Nakon toga se tačke spajaju već opisanom metodom.

22

Od linija formiramo trouglove.

23

Trouglove ofsetujemo da bismo dobili fuge i damo im debljinu.

24

 

Fuge su opcione. Ukoliko ih ne želimo, parametar za ofsetovanje postavimo na 0.

25

Ovako dobijene ploče predstavljaju konačan rezultat. Ovaj algoritam se može primeniti na drugim slobodnim površinama. Naravno, napomenjemo da se tačnost povećava sa smanjenjem zakrivljenosti površine i smanjenjem veličine ploča.

Published
Categorized as 00 Radovi

Standardizacija elemenata popločanja slobodnih formi – nastavak

Nakon dobijenih sfera, presecanje u sledećem koraku se vrši međusobno i sa sferama iz prethodnog koraka i slobodnom površinom. 15 Ovaj postupak se dalje ponavlja na isti način. 13 Kada se na ovaj način izdeli slobodna površina i dobiju se karakteristične tačke, onda ih treba spojiti. Ovaj zadatak je rešen tako što su spojene tačke svaka sa svakom, a onda dodat filter koji bira linije koje su potrebne. Potrebne linije su one koje su dužine iste kao poluprečnici sfera, sa tolerancijom od +/-1 jedinice mere. 12 Na ovaj način se dobija mreža istih jednakostraničnih trouglova, gde svaki trougao je jedan element standardizovanih dimenzija. 11

Published
Categorized as 00 Radovi

Standardizacija elemenata popločanja slobodnih formi – napredak

Strategija pri rešavanju problema je bila triangulisati slobodnu formu jednakostraničnim trouglovima. Krenuli smo od sfere kojoj centar leži na slobodnoj površini. Presek sfere i slobodne površi je aproksimirana kružnica koju delimo na 6 delova.

5

U ovih novih 6 tačaka postavljamo nove sfere istog poluprečnika kao i prva sfera i posmatramo preseke novih sfera i slobodne površi.

4

U preseku dobijamo 12 novih tačaka od kojih biramo 6 najudaljenijih od centra početne sfere.

2

U tim tačkama postavljamo nove sfere istog poluprečnika kao i prethodne sfere.

6

Ponovimo prethodni postupak i dobijemo 6 novih tačaka.

1

U tim tačkama postavimo nove sfere istog poluprečnika kao kod prethodnih sfera.

7

Sada se postupak menja jer nove sfere moramo presecati sa sferama iz prethodnog koraka i slobodnom površi, pa tek onda dobiti 12 novih tačaka. Sa tim novim tačakama ponavljamo postupak.

Za izvođenje ovog procesa korišćen je softver Rhinoceros u kombinaciji sa Grassgoper-om.

Tačnost ovog postupka zavisi od tačnosti aproksimacije presečnih kružnica. Dakle, što su poluprečnici sfera manji, te što je slobodna površ približnija ravni, te što su sfere zaobljenije, to će i triangulacija biti tačnija.

Published
Categorized as 00 Radovi

Standardizacija elemenata popločanja slobodnih formi

Tim: Olga Stojkov 1816 ; Marko Vučić 1828

 

Opis:

Cilj zadatka je istražiti moguće oblike elemenata popločanja kako bi se sa što manje različitih popločala slobodna forma. Ti elementi u osnovi mogu biti bilo kog geometrijskog oblika.  Uz to, treba istražiti i načine formiranja dodirnih ivica da bi fuge bile što manje. Sve u cilju standardizacije tih elemenata popločanja i smanjenja troškova proizvodnje. U poslednjoj fazi, potrebno je aplicirati te elemente na određenu slobodnu formu uz pomoć softvera za parametarsko modelovanje kako bi se proverila uspešnost zadatka.

Published
Categorized as 00 Radovi